测试
When $a \ne 0$, there are two solutions to $ax^2 + bx + c = 0$ and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
$$
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi
$$
$$
\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}
$$
$$
\overrightarrow{v} + \overrightarrow{w} = \overrightarrow{vw}
$$
$$
\overrightarrow{v} =
\begin{bmatrix}
v_1 \\
v_2 \\
... \\
v_n
\end{bmatrix}
$$
函数极值
$f(x)$在区间$[a, b]$上连续可导,
对于$x \in (x-\xi, x+\xi) \mid \xi>0$,
存在$f(\delta) > f(x)$,
则$f(\delta)$ 是$f(x)$在区间$\lbrack a, b \rbrack$上的极大值。
洛必达法则
$$
\lim_{x \to c} \frac{u(x)}{v(x)}
=
\lim_{x \to c} \frac{u^{\prime}(x)}{v^{\prime}(x)}
$$
定积分
$$
\int_{a}^{b}f(x)d{x} =
\lim_{n \to \infty}\sum_{i=1}^{n} \Delta x \cdot f(x_i)
$$
$$
\Delta x = \frac{b-a}{n}
$$
$$
x_i = a + \Delta x \cdot i
$$
微积分基本定理
$$
\frac{d}{dx}\int_{a}^{x}f(t)dt = f(x)
$$